AV_Data_Capture/LearningNote/PandasDemo.py
Tan Peng fc13f88731 优化正则等,修改逻辑,避免被覆盖
to learn goupby

learn pandas groupby

groupby

learn pandas groupby

优化正则提取番号和集数

待理解下载图片逻辑

还有剪裁+背景图逻辑

修改所有config[

将整理生成nfo的代码

可缓存番号信息和缩略图和海报

可以识别番号后集数和尾部集数,赞不能分辨-C中文字幕片

改正一个错误

嵌套字典存储数据

整理函数

修正匹配时间正则

pipenv 添加依赖

修改优先取三位数字的规则:heyzo四位数除外

添加了依赖 和 有番号的优化

修改了啥 我也记不得了
2022-10-09 20:47:38 +08:00

39 lines
1.0 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import pandas as pd
import numpy as np
'''
python数据处理三剑客之一pandas
https://pandas.pydata.org/pandas-docs/stable/user_guide
https://www.pypandas.cn/docs/getting_started/10min.html
'''
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
print(dates)
print(df)
df2 = pd.DataFrame({'A': 1.,
'B': pd.Timestamp('20130102'),
'C': pd.Series(1, index=list(range(4)), dtype='float32'),
'D': np.array([3] * 4, dtype='int32'),
'E': pd.Categorical(["test", "train", "test", "train"]),
'F': 'foo'})
print(df2)
print(df2.dtypes)
print(df.head())
print(df.tail(5))
print(df.index)
print(df.columns)
df.describe() # 统计数据摘要
df.T # index columns互转
df.sort_index(axis=1, ascending=False) # 排序axis=1 是columnsaxis=1 是index
df.sort_values(by='B') # 按值排序 按B列中的值排序
# 切行
df.A
df['A']
# 切行
df['20130102':'20130104']
df[0:3]